

Tetrahedron 59 (2003) 3643-3648

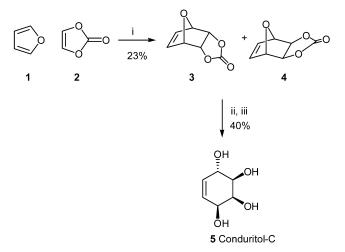
TETRAHEDRON

Synthesis of haloconduritols from an *endo*-cycloadduct of furan and vinylene carbonate

Arif Baran, Cavit Kazaz, Hasan Seçen* and Yaşar Sütbeyaz*

Department of Chemistry, Faculty of Arts and Sciences, Atatürk University, 25240 Erzurum, Turkey

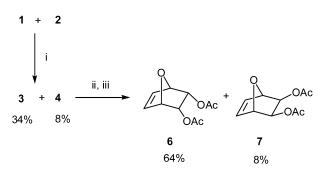
Received 7 October 2002; revised 6 March 2003; accepted 27 March 2003


Abstract—A method for preparing haloconduritols having a conduritol-A construction is described. A mixture of *endo*- and *exo*-cycloadduct derivatives prepared from the Diels–Alder reaction of furan and vinylene carbonate was converted into diacetate derivatives by hydrolysis (K₂CO₃/MeOH) followed by acetylation (Ac₂O/pyridine). Boron trihalide (BBr₃ or BCl₃)-assisted ring-opening of the *endo*-diacetate in CH₂Cl₂ at -78° C gave (1 α ,2 α ,3 β ,6 β)-6-halogeno-4-cyclohexene-1,2,3-triol 1,2-diacetate from which the corresponding triacetate was prepared by acetylation (AcCl). *trans*-Esterification of the *triacetate* (MeOH/HCl) afforded (1 α ,2 α ,3 β ,6 β)-6-halogeno-4-cyclohexene-1,2,3-triol (X=Br or Cl). BF₃-Assisted ring-opening of the *endo*-diacetate in CH₂Cl₂ gave (1 α ,2 α ,3 β ,6 β)-6-chloro-4-cyclohexene-1,2,3-triol 1,2-diacetate by means of halogen exchange. © 2003 Elsevier Science Ltd. All rights reserved.

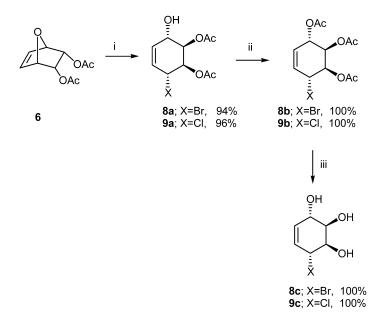
1. Introduction

Bromoconduritol is a covalent, irreversible, active-site directed glucosidase inhibitor. It inhibits mammalian α -glucosidase II (but not α -glucosidase I), yeast α -glucosidase and some β -glucosidases.¹ Bromoconduritol is a diastereomeric mixture of $(1\alpha, 2\beta, 3\alpha, 6\beta)$ -6-bromo-4-cyclohexene-1,2,3-triol (in the construction of conduritol-B) and $(1\alpha, 2\beta, 3\alpha, 6\alpha)$ -6-bromo-4-cyclohexene-1,2,3-triol (in the construction of conduritol-F) prepared from conduritol-B by treatment with HBr.^{1d} Apart from this method, however, only a small number of procedures are reported in the literature for the preparation of the other bromoconduritols. Guo² et al. described a method for the preparation of dihalogenoconduritols having a conduritol-A and B construction by the reaction of dilithium tetrachlorocuprate and dilithium tetrabromonickelate with unsaturated epoxides. In addition, they reported an improved procedure for the preparation of conduritol-B, from which they prepared mono and dibromoconduritol and chloroconduritol derivatives having a conduritol-B, E, and F construction.³ Haines⁴ and co-workers have reported the formation of some bromoconduritol derivatives in the synthesis of $(1\alpha, 2\alpha, 4\beta)$ -5-cyclohexene-1,2,4-triol. Hudlicky⁵ and co-workers showed the preparation of chloro and fluoroconduritol derivatives having conduritol-F and conduritol-E construction by the substitution of an epoxide derived from 3-chloro-cyclohexa-3,5-diene-cis-1,2-diol. In this paper, we present a method for the stereoselective preparation of a new bromoconduritol and chloroconduritol having the conduritol-A construction.

2. Results and discussion


Our synthesis was inspired by the conduritol-C synthesis described by Zefirov⁶ et al. They prepared conduritol-C by acidic hydrolysis of furan-vinylene carbonate cycloadducts (**3** and **4**) followed by neutralization. In this reaction, the etheric bond is cleaved stereospecifically to give conduritol-C (**5**) (Scheme 1).

Scheme 1. (i) Heating at 123–127°C; (ii) H₂SO₄, H₂O; (iii) Ba(OH)₂.


Keywords: haloconduritol; furan; vinylene carbonate; cycloaddition; ringopening; boron trihalides; neighboring group participation; *trans*esterification.

^{*} Corresponding authors. Tel.: +90-442-2314409; fax: +90-442-2360948; e-mail: hsecen@atauni.edu.tr (H. Seçen).

Scheme 2. (i) Heating at 123–127°C in pressure tube, 21 h; (ii) K₂CO₃, Me OH; (iii) Ac₂O, pyridine.

derivative **8b**, reacting with acetyl chloride in quantitative yield for further characterization and safe storage. HClcatalyzed *trans*-esterification of triacetate **8b** in MeOH gave bromoconduritol **8c** in quantitative yield. In the same manner, the reaction of *endo*-diacetate **6** with BCl₃ gave chloroconduritol diacetate **9a** in a yield of 96%. Acetylation of **9a** with acetyl chloride for further characterization afforded chloroconduritol triacetate **9b**, from which chloroconduritol **9c** was prepared by *trans*-esterification in quantitative yield (Scheme 3). An important point is that if the temperature of the reaction with BBr₃ or BCl₃ rises above -78° C, many reaction products are formed. The *trans*-esterification procedure is also very important for the

Scheme 3. (i) BX₃, CH₂Cl₂, -78°C, then H₂O (BX₃=BBr₃ or BCl₃); (ii) CH₃COCl, CH₂Cl₂; (iii) MeOH, HCl, 0°C.

Boron tribromide and boron trichloride have been successfully used to cleave ethers for 40 years.⁷ Vogel⁸ et al. showed stereospecific cleavage of the etheric bond of the Diels–Alder adducts of maleic anhydride to furfuryl esters using BBr₃. We assumed that the cleavage of the etheric bond in furan–vinylenecarbonate cycloadducts (**3** and **4**) with boron trihalides would result in the formation of halogenoconduritols.

In the first step of our synthesis, we prepared cycloadducts **3** and **4** by heating furan (**1**) and vinylene carbonate (**2**) in a sealed tube according to the literature procedure.⁹ In this reaction, *endo*-cycloadduct **3** is formed as the main product (ratio of **3/4** is 4:1). Attempts to direct the BBr₃ assisted ring-opening of **3** failed due to insolubility in the solvent (CH₂Cl₂) at the reaction temperature (-78° C). Considering the high polarities and solubility problem in CH₂Cl₂, we directly converted the mixture of cycloadducts **3** and **4** into acetate derivatives **6** and **7** by basic hydrolysis followed by acetylation with acetyl chloride (Scheme 2). Acetate derivatives **6** and **7** were easily separated by column chromatography.

Treatment of *endo*-diacetate **6** with BBr₃ at -78° C gave bromoconduritol diacetate **8a** as the sole product in a yield of 94%. Diacetate **8a** was converted into triacetate

Table 1. Proton coupling constants for 8a-c and 9a-c (J, Hz)

8a; $R^{1}=H$, $R^{2}=Ac$, X=Br8b; $R^{1}=R^{2}=Ac$, X=Br8c; $R^{1}=R^{2}=H$, X=Br9a; $R^{1}=H$, $R^{2}=Ac$, X=Cl9b; $R^{1}=R^{2}=Ac$, X=Cl9c; $R^{1}=R^{2}=H$, X=Cl

	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6}$	$J_{1,6}$	$J_{3,5}$
8a	2.4	7.0	2.2	10.1	3.3	4.3	_
8b	2.1	а	2.6	10.0	3.8	4.4	_
8c	2.3	7.0	2.6	9.9	3.6	4.0	1.4
9a	2.1	6.0	2.2	10.3	2.7	5.2	_
9b	2.0	а	2.0	10.0	3.1	5.2	_
9c	2.3	6.2	b	10.0	b	4.8	_

^a Undetermined from spectrum.

^b In the ¹H NMR spectrum of **9c** H_4 and H_5 resonate as an AB system due to broadening of the peaks. The same broadening is observed with H_3 and H_6 .

hydrolysis of triacetates **8b** and **9b**. Due to halides being in an allylic position, they are very reactive to substitution. Thus, experiments performed under basic conditions for the hydrolysis of **8b** and **9b** failed to give halogenoconduritols **8c** and **9c**.

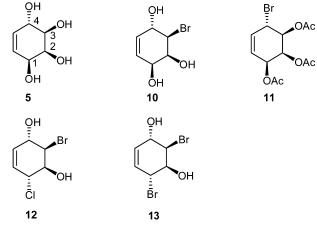
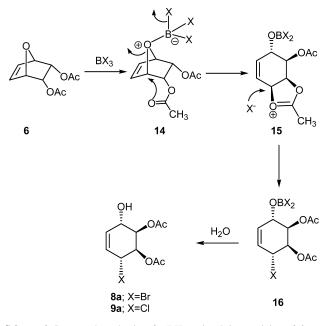
Complete peak assignments of the NMR spectra of 8a-c and 9a-c were carried out. Taking into consideration the coupling constants we easily elucidated the relative stereochemistry of H₁, H₂, and H₃ (Table 1).

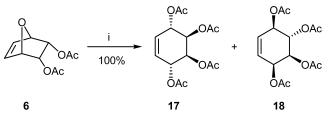
Looking at $J_{1,2}$ values ranging from 2.0 to 2.4 Hz we easily determined that H_1 and H_2 are *cis*. $J_{2,3}$ values between 6.0 and 7.0 Hz are consistent with a trans-construction. The mechanistic considerations also support the idea that H₂ and H₃ are *trans*. Here, the most difficult problem was to determine the relative stereochemistry of H₆. Based on $J_{1,6}$ values ranging from 4.0 to 5.2 Hz indicates that H_1 and H_6 could be trans or cis. Vogel¹⁰ et al. have reported cis coupling constants $J_{1,2}=2$ Hz and $J_{2,3}=1.5$ Hz, and a trans coupling constant $J_{3,4}=8$ Hz in conduritol-C (5). Comparing the literature value of $J_{1,2}$ (2 Hz, *cis*) in conductol-C with $J_{1,6}$ (4.0–5.2 Hz) in 8 and 9 suggest differences in these structures. A comparison of our spectral data established that they were different to the reported stereoisomers 10^4 and 11[†] having a conduritol-C construction. In halogensubstituted conduritol-A type cyclohexenyl systems¹² trans coupling constants ($J_{1,6}$ and $J_{2,3}$ according to our numbering in Table 1) vary from 4.3 to 7.3 Hz while cis coupling constants $J_{2,3}$ are 2.1–2.6 Hz. These values are consistent with those in Table 1. In particular, a comparison of coupling constants 8a-c and 9a-c with those of A-type dihalogenoconduritols 12^2 and 13^2 supplied us with results in good agreement with those of the dihalogenoconduritols (Fig. 1).¹³

The configurations of the halogens at C₆ of **8c** and **9c** were also confirmed by the observation of NOE effects. In **8c**, the irradiation of H–C₆(Br) at δ 4.61 caused signal enhancement of the resonances at the adjacent double bond proton (H₅), and in particular at H₃. In a similar way, in **9c**, irradiation of H–C₆(Cl) at δ 4.49 caused signal enhancement of the resonances at the adjacent double bond proton (H₅), and in particular at H₃.

In the light of structures 8a and 9a, we outline the BBr₃ or BCl₃ assisted ring-opening mechanism of 6 in Scheme 4.

Vogel¹⁴ et al. have reported the neighboring group participation of benzoate in BBr₃-assisted ring-opening of furan cycloadducts. Moreover, neighboring group participation of acetates was observed in many conduritol syntheses.¹⁵ Based on these literature reports we propose a similar neighboring group participation. As seen in Scheme 4, first BX₃ is bound to **6** using the etheric oxygen to form intermediate **14**. Then, cleavage by attack of the carbonyl oxygen of the neighboring acetate affords intermediate **15** and a free halide (X⁻). An attack of free halide at the allylic carbon by an S_N2 mechanism gives intermediate **16**, which forms **8a** or **9a** by hydrolysis. Alternatively, in the first step


Figure 1.

of the reaction, BX_3 may be bonded to carbonyl oxygen of the acetate, which is presumably more basic. Probably, this is not productive to afford any product.

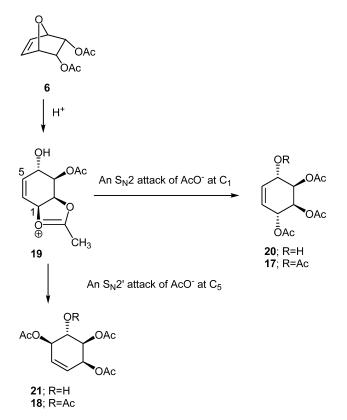
As outlined in Scheme 1, without any neighboring group participation 3 and 4 would give conduritol-C. As chemical evidence for the mechanism in Scheme 4, we propose that 6 should give conduritol-A tetraacetate (17) by acetolysis with acetic anhydride under acidic conditions. Indeed, this reaction afforded conduritol-A tetraacetate (17) and

Scheme 4. Suggested mechanism for BX₃ assisted ring opeining of 6.

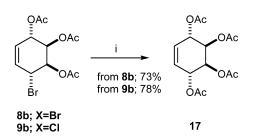
ratio of 17:18 = 2: 1

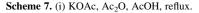
Scheme 5. (i) Ac_2O , H_2SO_4 , room temperature.

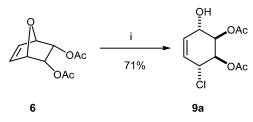
3645


[†] We thank Professor W. B. Motherwell for providing unpublished data on this compound.¹¹

conduritol-F tetraacetate (18) in a ratio of 2:1 (Scheme 5). We easily characterized conduritol-A tetraacetate 17^{16} and conduritol-F tetraacetate 18^{15b} by comparing their NMR spectroscopic data with those of authentic samples.


The acetolysis reaction of **6** with neighboring group participation probably proceeds through a **19**-like intermediate. While an $S_N 2$ attack of acetate at C_1 gives conduritol-A tetraacetate **17** through **20**, an $S_N 2'$ attack at C_5 gives conduritol-F tetraacetate **18** through **21** (Scheme 6).


We submitted **8b** and **9b** to substitution with KOAc. Both reactions also resulted in the formation of conduritol-A tetraacetate **17** (Scheme 7). The formation of conduritol-A tetraacetate **17** in both reactions shows that they proceed via neighboring group participation, probably through a **19**-like intermediate.


We expected fluoroconduritol formation by the BF_3 -assisted ring opening of 6. The reaction performed in CH_2Cl_2 gave chloroconduritol derivative **9a** instead of a fluoroconduritol

Scheme 6. Suggested mechanism for the formation of 17 and 18 from 6.

Scheme 8. (i) BF_3 , CH_2Cl_2 , $-78^{\circ}C$ then H_2O .

derivative, which was a surprising result (Scheme 8). Repeated experiments gave the same result. This reaction probably occurs via in situ halogen exchange¹⁷ between CH_2Cl_2 and BF_3 to form BCl_3 (or $BClF_2$ etc.). There was no reaction when the reaction was performed in Et_2O , THF, benzene or EtOAc.

3. Conclusion

In conclusion, we have described an efficient method for the preparation of bromoconduritol and chloroconduritol having a conduritol-A construction via *endo*-cycloadduct of furan and vinylene carbonate. Our studies on the ring-opening of *exo*-cycloadducts are currently in progress.

4. Experimental

4.1. General information

Solvents were purified and dried by standard procedures before use. Melting points were determined on a Thomas-Hoover capillary melting apparatus. Infrared spectra were obtained from KBr pellets on a Mattson 1000 FT-IR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded on a 200 (50) MHz Varian spectrometer. The mass spectra were recorded on VG Zabspec GC–MS instruments. Elemental analyses were carried out on a Carlo Erba 1106 model CHNS-O analyser. Column chromatography was performed on silica gel 60 (70–230 mesh ASTM). Thin layer chromatography was carried out on Merck 0.2 mm silica gel, 60 F₂₅₄ analytical aluminum plates.

4.1.1. Vinylene carbonate (2). The reported procedure⁹ was used for the synthesis of vinylene carbonate **2**. Bp 52°C/25 mm Hg (lit.⁹ bp 73–74°C/32 mm Hg). ¹H NMR (200 MHz, CDCl₃) δ 6.34 (s, 2H). ¹³C NMR (50 MHz, CDCl₃) δ 151.6, 92.3.

4.1.2. Diels–Alder reaction of furan (1) and vinylene carbonate (2). The cycloaddition procedure described in the literature⁹ was used to afford cycloadducts **3** and **4** in a ratio of 4:1 (Yield: 42% based on furan). Recrystallization of the mixture of **3** and **4** from hexane–ethyl acetate (1:1) gave two types of crystal, which were separated based on appearance.

endo-Cycloadduct **3**. Salt-like colorless crystal, mp 144–146°C, lit.¹⁸ 144–148°C. ¹H NMR (200 MHz, CDCl₃) δ 6.51 (br s, 2H) 5.16 (m, AA' part of AA'BB' system, 2H), 4.94 (m, BB' part of AA'BB' system, 2H). ¹³C NMR (50 MHz, CDCl₃) δ 156.3, 136.1, 81.2, 76.3.

3646

exo-Cycloadduct **4**. Colorless needless, mp 130–132°C, lit.¹⁸ 137–139°C. ¹H NMR (200 MHz, CDCl₃) δ 6.38 (s, 2H) 5.05 (s, 2H), 4.65 (s, 2H). ¹³C NMR (50 MHz, CDCl₃) δ 156.7, 136.7, 82.6, 78.4.

4.1.3. endo-Diacetate 6 and exo-diacetate 7. A 4:1 isomeric mixture of cycloadducts 3 and 4 (4.62 g, 30 mmol) was dissolved in 100 mL of MeOH-H₂O (20:1) and then K_2CO_3 (1.00 g) was added. The resulting mixture was magnetically stirred at room temperature for 10 h. The mixture was neutralized with AcOH and the solvent was evaporated. To the residue were added Ac₂O (7.35 g, 72 mmol) and 10 mL of pyridine. The mixture was stirred at room temperature for 6 h. The mixture was cooled to 0°C and 70 mL of 10% HCl solution was added, followed by extraction with ethyl acetate $(3 \times 50 \text{ mL})$. The combined organic extracts were washed with saturated NaHCO₃ solution (3×10 mL) and then dried (Na₂SO₄). Removal of the solvent under reduced pressure gave a mixture of diacetates 6 and 7 (5.09 g, overall yield of crude acetate mixture: 80%). Chromatography of the diacetates on a silicagel column (40 g) eluting with hexane-ethyl acetate (2:1) gave endo-diacetate 6 as the first fraction and exodiacetate 7 as the second.

First fraction endo-cis-7-oxabicyclo[2.2.1]hept-5-ene-2,3diol diacetate (6). $R_{\rm f}$ =0.35, (4.10 g, 64%). Colorless crystals. Mp 81–83°C (lit.¹⁹ 75–76°C, from Et₂O). ¹H NMR (200 MHz, CDCl₃) δ 6.42 (br s, 2H), 5.07–5.03 (AA'BB' system, 4H), 1.96 (s, 6H). ¹³C NMR (50 MHz, CDCl₃) δ 171.6, 136.8, 80.6, 70.7, 22.4. **IR** (KBr) 3185, 2978, 1754, 1439, 1388, 1244, 1105, 1076, 1037, 944 cm⁻¹. Anal. calcd for C₁₀H₁₂O₅ (212.20): C, 56.60; H, 5.70; Found: C, 56.56; H, 5.69.

Second fraction exo-cis-7-oxabicyclo[2.2.1]hept-5-ene-2,3diol diacetate (7). $R_{\rm f}$ =0.19 (0.52 g, 8%). Colorless crystal. Mp 91–92°C. ¹H NMR (200 MHz, CDCl₃) δ 6.45–6.43 (m, 2H), 4.89–4.87 (m, 2H), 4.81 (br s, 2H), 2.09 (s, 6H). ¹³C NMR (50 MHz, CDCl₃) δ 172.1, 137.9, 83.5, 72.0, 22.6. IR (KBr) 3104, 3012, 2950, 1758, 1727, 1430, 1380, 1292, 1257, 1052, 944 cm⁻¹. Anal. calcd for C₁₀H₁₂O₅ (212.20): C, 56.60; H, 5.70. Found: C, 56.61; H, 5.66

4.1.4. (1α,2α,3β,6,β)-6-Bromo-4-cyclohexene-1,2,3-triol 1,2-diacetate (8a). Under nitrogen atmosphere, to a stirred solution of endo-diacetate 6 (1.00 g, 4.7 mmol) in 20 mL of CH_2Cl_2 was added dropwise a solution of BBr₃ (0.5 mL, 1.30 g, 5.2 mmol) in 20 mL of CH_2Cl_2 at $-78^{\circ}C$ over 10 min. After addition was completed, the mixture was stirred at 0°C for 1 h, and then at room temperature for 4 h under air atmosphere. To the reaction mixture was added 5 mL of saturated NaHCO₃ solution. The organic phase was separated. The aqueous phase was additionally extracted with CH₂Cl₂ (3×30 mL). The combined organic phases were dried over Na₂SO₄. Evaporation of the solvent gave 8a (colorless oil, 1.30 g, 94%). ¹H NMR (200 MHz, CDCl₃) δ 5.90 (br dd, 1H, H₅, $J_{4,5}$ =10.1 Hz, $J_{5,6}$ =3.3 Hz), 5.80 (dd, 1H, H₄, $J_{4,5}$ =10.1 Hz, $J_{3,4}$ =2.2 Hz), 5.42 (dd, 1H, H₁, $J_{1,6}$ =4.3 Hz, $J_{1,2}$ =2.4 Hz), 5.31 (dd, 1H, H₂, $J_{2,3}$ =7.0 Hz, $J_{1,2}$ =2.4 Hz), 4.53 (dd, 1H, H₆, $J_{1,6}$ =4.3 Hz, $J_{5,6}$ =3.3 Hz), 4.46 (br d, 1H, H₃, $J_{2,3}$ =7.0 Hz), 3.78 (br s, OH), 2.11 (s, 3H), 2.10 (s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 172.4, 171.5, 132.6, 129.3, 74.6, 73.7, 68.8, 45.2, 22.9, 22.7. IR (KBr) 3463, 3004, 1769, 1429, 1361, 1240, 1057, 922 cm⁻¹.

4.1.5. ($1\alpha, 2\alpha, 3\beta, 6\beta$)-6-Chloro-4-cyclohexene-1,2,3-triol **1,2-diacetate** (9a). The procedure described above for BBr₃ was applied to 6 using BCl₃ to give 9a (colorless oil, 96%). ¹H NMR (200 MHz, CDCl₃) δ 5.79 (dd, 1H, H₄, $J_{4,5}$ =10.3 Hz, $J_{3,4}$ =2.2 Hz), 5.73 (dd, 1H, H₅, $J_{4,5}$ =10.3 Hz, $J_{5,6}$ =2.7 Hz), 5.27 (dd, 1H, H₁, $J_{1,6}$ =5.2 Hz, $J_{1,2}$ =2.1 Hz), 5.15 (dd, 1H, H₂, $J_{2,3}$ =6.0 Hz, $J_{1,2}$ =2.1 Hz), 4.42 (dd, 1H, H₆, $J_{1,6}$ =5.2 Hz, $J_{5,6}$ =2.7 Hz), 4.24 (br d, 1H, H₃, $J_{2,3}$ =6.0 Hz), 3.62 (br s, OH), 2.00 (s, 6H). ¹³C NMR (50 MHz, CDCl₃) δ 172.3, 171.7, 132.4, 129.1, 74.2, 73.8, 68.5, 55.5, 22.8, 22.7. IR 3448, 2941, 1749, 1437, 1379, 1240, 1055, 951 cm⁻¹.

4.1.6. (1α,2α,3β,6β)-6-Bromo-4-cyclohexene-1,2,3-triol triacetate (8b). To a solution of 8a (1.00 g, 3.4 mmol) in 20 mL of CH₂Cl₂ was added acetyl chloride (0.32 g, 4.1 mmol). The resulting mixture was stirred for 12 h. Removal of the solvent, HCl, and excess acetyl chloride under reduced pressure (30°C, 25 mm Hg) gave triacetate **8b** (colorless oil, 1.14 g, quantitative). ¹H NMR (200 MHz, CDCl₃) δ 5.95 (dd, 1H, H₅, $J_{4,5}$ =10.0 Hz, $J_{5,6}$ =3.8 Hz), 5.68 (dd, 1H, H₄, $J_{4,5}$ =10.0 Hz, $J_{3,4}$ =2.6 Hz), 5.53–5.42 (m, 2H, H₂ and H₃), 5.38 (dd, 1H, H₁, $J_{1,6}$ =4.4 Hz, $J_{1,2}$ =2.1 Hz), 4.51 (dd, 1H, H₆, $J_{1,6}$ =4.4 Hz, $J_{5,6}$ =3.8 Hz), 2.07 (s, 6H), 2.02 (s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 171.5, 171.0 (two carbon), 131.2, 128.7, 74.4, 70.4, 70.2, 44.1, 22.7, 22.6 (two carbon). IR (KBr) 3061, 2995, 2961, 1757, 1437, 1379, 1233, 1055, 963.

4.1.7. (1α,2α,3β,6β)-6-Chloro-4-cyclohexene-1,2,3-triol triacetate (9b). The procedure described above for 8a was applied to 9a to give triacetate 9b (colorless oil, 100%). ¹H NMR (200 MHz, CDCl₃) δ 5.85 (dd, 1H, H₅, $J_{4,5}$ =10.0 Hz, $J_{5,6}$ =3.1 Hz), 5.68 (dd, 1H, H₄, $J_{4,5}$ =10.0 Hz, $J_{3,4}$ =2.0 Hz), 5.34–5.25 (m, 2H, H₂ and H₃), 5.22 (dd, 1H, H₁, $J_{1,6}$ =5.2 Hz, $J_{1,2}$ =2.0 Hz), 4.42 (dd, 1H, H₆, $J_{1,6}$ =5.2 Hz, $J_{5,6}$ =3.1 Hz), 2.03 (s, 6H), 1.99 (s, 3H). ¹³C NMR (50 MHz, CDCl₃) δ 171.5, 171.1, 171.0, 131.1, 128.6, 74.1, 70.4, 70.2, 54.7, 22.7, 22.5 (two carbon). IR (KBr) 2978, 2876, 1753, 1446, 1395, 1242, 1063, 961 cm⁻¹.

4.1.8. (1α,2α,3β,6β)-6-Bromo-4-cyclohexene-1,2,3-triol (8c). A stirred solution of 8b (1.00 g, 3.0 mmol) in 20 mL of methanol was cooled to 0°C. At the given temperature, HCl gas was passed through the solution over 20 min. The reaction flask was closed with a stopper and stirred at room temperature for 12 h. Removal of the solvent, methyl acetate and HCl under reduced pressure (30°C, 25 mm Hg) gave bromoconduritol 8c (0.63 g, quantitative). Colorless crystals, mp 129–130°C (from EtOAc). ¹H NMR (200 MHz, CD₃OD) δ 5.84 (ddd, 1H, H₅, $J_{4.5}$ =9.9 Hz, $J_{5.6}=3.6$ Hz, $J_{3.5}=1.4$ Hz), 5.71 (dd, 1H, H₄, $J_{4.5}=9.9$ Hz, $J_{3,4}=2.6$ Hz), 4.61 (dd, 1H, H₆, $J_{1,6}=4.0$ Hz, $J_{5,6}=3.6$ Hz), 4.30 (dm, 1H, H₃, $J_{2,3}$ =7.0 Hz). 4.16 (dd, 1H, H₁, J_{1,6}=4.0 Hz, J_{1,2}=2.3 Hz), 3.96 (dd, 1H, H₂, J_{2,3}=7.0 Hz, $J_{1,2}$ =2.3 Hz). ¹³C NMR (50 MHz, CD₃OD) δ 134.3, 130.2, 76.9, 74.4, 71.9, 52.1. IR (KBr) 3387, 3182, 2953, 2876, 1472, 1421, 1370, 1319, 1268, 1242, 1217, 1165, 1114,

1063, 1038, 1012, 987. EIMS m/z (%): 192.0 [M⁺-H₂O] (5),190.0 [M⁺-H₂O] (5), 149.9 (98), 147.9 (100), 111.0 (85), 99.0 (80), 83.0 (100) 65.1 (51), 60.1 (37). Anal. calcd for C₆H₉BrO₃ (209.04) C, 34.47; H, 4.34. Found: C, 34.81; H, 4.45.

4.1.9. (1α,2α,3β,6β)-6-Chloro-4-cyclohexene-1,2,3-triol (9c). The procedure described above for **8b** was applied to **9b** to give chloroconduritol **9c** in a quantitative yield. Colorless crystals, mp 107–109°C (from EtOAc). ¹H NMR (200 MHz, CD₃OD) δ 5.77 (AB system, 2H, H₄ and H₅, $J_{4,5}$ =10.0 Hz), 4.49 (br d, 1H, H₆, $J_{1,6}$ =4.8 Hz), 4.21 (br d, 1H, H₃, $J_{2,3}$ =6.2 Hz), 4.02 (dd, 1H, H₁, $J_{1,6}$ =4.8 Hz, $J_{1,2}$ =2.3 Hz), 3.80 (dd, 1H, H₂, $J_{2,3}$ =6.2 Hz, $J_{1,2}$ =2.3 Hz). ¹³C NMR (50 MHz, CD₃OD) δ 133.9, 130.1, 76.4, 75.0, 72.0, 60.9. IR (KBr) 3387, 3182, 2953, 2876, 1625, 1472, 1421, 1370, 1344, 1268, 1242, 1217, 1191, 1114, 1089, 1038, 1012, 987. EIMS *m*/*z* (%): 149 [M⁺−OH] (9), 147 [M⁺−OH] (15), 137 (4), 129 (9), 112 (54), 105 (100), 104 (92), 100 (65), 83 (63). Anal. calcd for C₆H₉ClO₃ (164.59): C, 43.78; H, 5.51. Found: C, 44.1, H, 5.3.

4.1.10. Acid-catalyzed acetolysis of *endo*-diacetate 6 with Ac₂O. *endo*-Diacetate 6 (1.00 g, 4.7 mmol) was dissolved in Ac₂O (5 mL). After the addition of one drop of H₂SO₄ the reaction mixture was magnetically stirred at room temperature for 6 h. Ac₂O was removed under reduced pressure. The residue was chromatographed on basic Al₂O₃ (20 g) eluting with CHCl₃. Evaporation of the solvent gave the mixture of conduritol-A tetracetate (17)¹⁶ and conduritol-F tetraacetate (18)^{15b} in a ratio of 2:1 (1.47 g, total yield:quantitative).

4.1.11. Substitution of 8b with KOAc. The literature procedure described for 1,4-diacetoxy-2,3-dibromo-5-cyclohexene³ was applied to **8b** to give conduritol-A tetracetate $(17)^{16}$ in a yield of 73%.

4.1.12. Substitution of 9b with KOAc. The literature procedure described for 1,4-diacetoxy-2,3-dibromo-5-cyclohexene³ was applied to 9b to give conduritol-A tetracetate $(17)^{16}$ in a yield of 78%.

4.1.13. BF₃-Assisted ring-opening of 6 in CH₂Cl₂. The procedure described for the preparation of **8a** was applied to 6 in CH₂Cl₂ using BF₃·OEt₂ to give chloroconduritol derivative **9a**, colorless oil, in a yield of 71%.

Acknowledgements

We are grateful to Atatürk University for supporting this work (Project number: 1998/55). We wish to thank Professor Dr Metin Balci and Dr Ahmet Ceyhan Goren for helpful discussions.

References

- (a) Elbein, A. D. Methods Enzymol. 1987, 138, 661–709, (Complex Carbohydr., Pt. E). (b) Elbein, A. D. Annu. Rev. Biochem. 1987, 56, 497–534. (c) Elbein, A. D. FASEB J. 1991, 5, 3055–3063. (d) Legler, G. Methods Enzymol. 1977, 46, 368–381. (e) Salvucci, M. E. Arch. Insect Biochem. 2000, 45, 117–128. (f) Trudel, G. C.; Herscovics, A.; Holland, P. C. Biochem. Cell. Biol. 1988, 66, 1119–1125. (g) Alonso, J. M.; Santa-Cecilia, A.; Calvo, P. Eur. J. Biochem. 1993, 215, 37–42.
- Guo, Z. X.; Haines, A. H.; Taylor, R. J. K. Synlett 1993, 607–608.
- Guo, Z. X.; Haines, A. H.; Pyke, S. M.; Pyke, S. G.; Taylor, R. J. K. *Carbohydr. Res.* 1994, 264, 147–153.
- Haines, A. H.; King, A. S. H.; Knight, J. R.; Nguyen, V. A. Tetrahedron Lett. 1998, 39, 4393–4396.
- Hudlicky, T.; Luna, H.; Olivo, H. F.; Andersen, C.; Nugent, T.; Price, J. D. J. Chem. Soc., Perkin Trans. 1 1991, 2907–2917.
- Yur'ev, Y. K.; Zefirov, N. S. Zhur. Obshchei Khim. 1961, 31, 685–686.
- (a) Youssefyeh, R. D.; Mazur, Y. Chem. Ind. (London) 1963, 609–610. (b) Stehle, V.; Brini, M.; Pousse, A. Bull. Soc.Chim. Fr. 1969, 2171–2175. (c) Cabiddu, S.; Maccioni, A.; Mura, L.; Secci, M. Rend. Semin. Fac. Sci. Univ. Cagliari 1975, 45, 113–116, Chem. Abstr. 1976, 84, 164216. (d) Coe, J.; Wirtz, M. C.; Brooks, P. R.; Rescek, D. M.; Woodworth, G. F.; Morgan, B. P. Book of Abstracts, 219th ACS National Meeting, San Francisco, CA, March 26–30, 2000; American Chemical Society: Washington, DC; ORGN-579. (e) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249–282.
- Jotterand, N.; Vogel, P.; Schenk, K. Helv. Chim. Acta 1999, 82, 821–847.
- Newman, M. S.; Addor, R. W. J. Am. Chem. Soc. 1955, 77, 3789–3793.
- Le Drian, C.; Vieira, E.; Vogel, P. Helv. Chim. Acta 1989, 72, 338–347.
- Jung, P. M. J.; Motherwell, W. B.; Williams, A. S. Chem. Commun. 1997, 1283–1284.
- Kohrt, J. T.; Gu, J. X.; Johnson, J. R. J. Org. Chem. 1998, 63, 5088–5093, and see the supporting material of the publication on the web.
- 13. We thank Professor Dr A. H. Haines for providing unpublished data on these compounds.
- 14. Allemann, S.; Vogel, P. Helv. Chim. Acta 1994, 77, 1-9.
- (a) Balci, M.; Sutbeyaz, Y.; Secen, H. *Tetrahedron* 1990, 46, 3715–3742.
 (b) Secen, H.; Sutbeyaz, Y.; Balci, M. *Tetrahedron Lett.* 1990, 31, 1323–1326.
- 16. Sutbeyaz, Y.; Secen, H.; Balci, M. J. Chem. Soc., Chem. Commun. 1988, 1330-1331.
- (a) Hartman, J. S.; Miller, J. M. Inorg. Nucl. Chem. Lett. 1969, 5, 831–835. (b) Bula, M. J.; Hamilton, D. E.; Hartman, J. S. J. Chem. Soc., Dalton Trans. 1972, 1405–1412.
- 18. Kowarski, C. R.; Sarel, S. J. Org. Chem. 1973, 38, 117-119.
- Bazan, C. B.; Oskam, J. H.; Cho, H. N.; Park, L. Y.; Schrock, R. R. J. Am. Chem. Soc. 1991, 113, 6899–6907.